Humans Interbred Neanderthals 50,000 Years Ago

Humans Interbred Neanderthals 50,000 Years Ago:   Following the genome sequence of the oldest modern human remains outside of Africa using the most refined DNA analysis to data, scientists believe they arrived at a more price time frame when humans and Neanderthals first interbred – sometimes between 50,000 and 60,000 years ago. The findings also suggest modern humans arrived in northern Eurasia substantially earlier than some scientists thought.

A an ancient leg bone

The DNA in the man

Humans Interbred Neanderthals 50,000 Years Ago:   The DNA in the man’s femur shows that he had some Neanderthal ancestors. Credit: Bence Viola/Max Planck Institute for Evolutionary Anthropology.  Carbon dating and DNA sequence was conducted on the shaft of a thighbone found by an artist and mammoth ivory collector on the left bank of the river Irtysh near the settlement of Ust’-Ishim in western Siberia in 2008.

The remains changed several hands before they eventually reached the Max Planck Institute for Evolutionary Anthropology in Germany, where Prof Svante Paabo and colleagues pioneered methods to extract DNA from ancient human remains and read its genetic code. They found the remains belong to a person who lived some 45,000 years ago at a time when modern humans were only beginning to expand across Europe and Asia.

The earliest modern human:

Humans Interbred Neanderthals, Denisovans; mysterious species

This reconstruction of another ancient modern human found in Romania 43,000 years ago gives us a glimpse of how the Siberian man might have looked like.

This reconstruction of another ancient modern human found in Romania 43,000 years ago gives us a glimpse of how the Siberian man might have looked like.  Humans Interbred Neanderthals 50,000 Years Ago:   The analysis revealed several important insights like the ancient’s diet  that included plants or plant eaters and fish or other aquatic life.

Most importantly, the DNA sequence shows that the ancient human shared unshuffled chunks of DNA from a now extinct species of human, Neanderthals who evolved outside of Africa. Namely, 2.3 percent of his DNA came from Neanderthals,  a bit higher than found in modern humans living outside Africa today — a level that ranges from 1.7 to 2.1 percent — but too small a difference to be statistically significant. The new analysis of the date of human-Neanderthal mixing dramatically narrowed the likely range to between 50,000 and 60,000 years ago, a much tighter window than the previous range of between 37,000 and 86,000 years ago.

[INTERESTING] New theory suggests Neanderthals went extinct because of their larger eyes

“Our analysis shows that modern humans had already interbred with Neanderthals then and we can determine when that first happened much more precisely than we could before,” said Paabo.

Humans Interbred Neanderthals 50,000 Years Ago:   Moreover, the Siberian man was equally related to West European hunter-gatherers, North Asian hunter-gatherers, East Asians, as well as to the natives of the Andaman Islands off South Asia.

Previous studies suggested there was an early split of people who followed a coastal route to Australia, New Guinea and coastal Asia, however the present findings reported in Nature do not support them.


Genome sequence of a 45,000-year-old modern human from western Siberia:
Humans Interbred Neanderthals 50,000 Years Ago:

Nature
514,
445–449
(23 October 2014)
doi:10.1038/nature13810
Received
15 May 2014
Accepted
29 August 2014
Published online
22 October 2014

Abstract

Humans Interbred Neanderthals 50,000 Years Ago:   We present the high-quality genome sequence of a ~45,000-year-old modern human male from Siberia. This individual derives from a population that lived before—or simultaneously with—the separation of the populations in western and eastern Eurasia and carries a similar amount of Neanderthal ancestry as present-day Eurasians. However, the genomic segments of Neanderthal ancestry are substantially longer than those observed in present-day individuals, indicating that Neanderthal gene flow into the ancestors of this individual occurred 7,000–13,000 years before he lived. We estimate an autosomal mutation rate of 0.4 × 10−9 to 0.6 × 10−9 per site per year, a Y chromosomal mutation rate of 0.7 × 10−9 to 0.9 × 10−9 per site per year based on the additional substitutions that have occurred in present-day non-Africans compared to this genome, and a mitochondrial mutation rate of 1.8 × 10−8 to 3.2 × 10−8 per site per year based on the age of the bone.

At a glance

Figures

left

  1. Geographic location, morphology and dating.
    Figure 1
  2. Principal Components (PC) analysis exploring the relationship of Ust/
    Figure 2
  3. Statistics testing whether the Ust/
    Figure 3
  4. Inferred population size changes over time.
    Figure 4
  5. Regions of Neanderthal ancestry on chromosome 12 in the Ust/
    Figure 5
  6. Dating the Neandertal admixture in Ust/
    Figure 6

right

Accession codes

Primary accessions

European Nucleotide Archive

References:
Humans Interbred Neanderthals 50,000 Years Ago;  

  1. Trinkaus, E. & Ruff, C. B. Diaphyseal cross-sectional geometry of Near Eastern Middle Paleolithic humans: the femur. J. Archaeol. Sci. 26, 409424 (1999)
  2. Brock, F. et al. Reliability of nitrogen content (%N) and carbon:nitrogen atomic ratios (C:N) as indicators of collagen preservation suitable for radiocarbon dating. Radiocarbon 54, 879886 (2012)
  3. Richards, M. P. & Trinkaus, E. Out of Africa: modern human origins special feature: isotopic evidence for the diets of European Neanderthals and early modern humans. Proc. Natl Acad. Sci. USA 106, 1603416039 (2009)
  4. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222226 (2012)
  5. Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553559 (2013)
  6. The Y Chromosome Consortium A nomenclature system for the tree of human Y-chromosomal binary haplogroups. Genome Res. 12, 339348 (2002)
  7. Shapiro, B. et al. A Bayesian phylogenetic method to estimate unknown sequence ages. Mol. Biol. Evol. 28, 879887 (2011)
  8. Patterson, N. et al. Ancient admixture in human history. Genetics 192, 10651093 (2012)
  9. Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225228 (2014)
  10. Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 8791 (2014)
  11. Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409413 (2014)
  12. Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 4349 (2014)
  13. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493496 (2011)
  14. Scally, A. & Durbin, R. Revising the human mutation rate: implications for understanding human evolution. Nature Rev. Genet. 13, 745753 (2012)
  15. Kong, A. et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488, 471475 (2012)
  16. Langergraber, K. E. et al. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc. Natl Acad. Sci. USA 109, 1571615721 (2012)
  17. Prüfer, K. et al. The bonobo genome compared with the chimpanzee and human genomes. Nature 486, 527531 (2012)
  18. Xue, Y. et al. Human Y chromosome base-substitution mutation rate measured by direct sequencing in a deep-rooting pedigree. Curr. Biol. 19, 14531457 (2009)
  19. Kuroki, Y. et al. Comparative analysis of chimpanzee and human Y chromosomes unveils complex evolutionary pathway. Nature Genet. 38, 158167 (2006)
  20. Wang, J., Fan, H. C., Behr, B. & Quake, S. R. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150, 402412 (2012)
  21. Sankararaman, S., Patterson, N., Li, H., Pääbo, S. & Reich, D. The date of interbreeding between Neandertals and modern humans. PLoS Genet. 8, e1002947 (2012)
  22. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 10531060 (2010)
  23. Reich, D. et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516528 (2011)
  24. Skoglund, P. & Jakobsson, M. Archaic human ancestry in East Asia. Proc. Natl Acad. Sci. USA 108, 1830118306 (2011)
  25. Fenner, J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am. J. Phys. Anthropol. 128, 415423 (2005)
  26. McCown, T. D. & Keith, A. The Stone Age of Mount Carmel Vol. 2 (Clarendon, Oxford, 1939)
  27. Vandermeersch, B. Les Hommes Fossiles de Qafzeh (Israel) 319 (Éditions du CNRS, 1981)
  28. Rasmussen, M. et al. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 334, 9498 (2011)
  29. Hublin, J. J. The earliest modern human colonization of Europe. Proc. Natl Acad. Sci. USA 109, 1347113472 (2012)
  30. Müller, U. C. et al. The role of climate in the spread of modern humans into Europe. Quat. Sci. Rev. 30, 273279 (2011)
  31. Goebel, T. A., Derevianko, A. P. & Petrin, V. T. Dating the Middle to Upper Paleolithic transition at Kara-Bom. Curr. Anthropol. 34, 452458 (1993)
  32. Kuhn, S. L. & Zwyns, N. Rethinking the initial Upper Paleolithic. Quat. Int. http://dx.doi.org/10.1016/j.quaint.2014.05.040 (2014)
  33. Bronk Ramsey, C., Scott, M. & van der Plicht, H. Calibration for archaeological and environmental terrestrial samples in the time range 26–50 ka cal bp. Radiocarbon. 55, 20212027 (2013)
  34. Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 Years cal bp. Radiocarbon 55, 18691887 (2009)
  35. Kircher, M., Stenzel, U. & Kelso, J. Improved base calling for the Illumina Genome Analyzer using machine learning strategies. Genome Biol. 10, R83 (2009)
  36. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 17541760 (2009)

Download references

Author information

Affiliations:
Humans Interbred Neanderthals 50,000 Years Ago;

  1. Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing 100044, China

    • Qiaomei Fu
  2. Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany

    • Qiaomei Fu,
    • Ayinuer Aximu-Petri,
    • Kay Prüfer,
    • Cesare de Filippo,
    • Matthias Meyer,
    • Michael Lachmann,
    • Janet Kelso,
    • T. Bence Viola &
    • Svante Pääbo
  3. Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA

    • Heng Li,
    • Priya Moorjani &
    • David Reich
  4. Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA

    • Heng Li &
    • David Reich
  5. Department of Biological Sciences, Columbia University, New York, New York 10027, USA

    • Priya Moorjani
  6. Department of Integrative Biology, University of California, Berkeley, California 94720-3140, USA

    • Flora Jay &
    • Montgomery Slatkin
  7. Institute for Problems of the Development of the North, Siberian Branch of the Russian Academy of Sciences, Tyumen 625026, Russia

    • Sergey M. Slepchenko &
    • Dmitry I. Razhev
  8. Expert Criminalistics Center, Omsk Division of the Ministry of Internal Affairs, Omsk 644007, Russia

    • Aleksei A. Bondarev
  9. Department of Biology, Emory University, Atlanta, Georgia 30322, USA

    • Philip L. F. Johnson
  10. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany

    • Nicolas Zwyns,
    • Domingo C. Salazar-García,
    • Michael P. Richards,
    • Jean-Jacques Hublin &
    • T. Bence Viola
  11. Department of Anthropology, University of California, Davis, California 95616, USA

    • Nicolas Zwyns
  12. Department of Archaeology, University of Cape Town, Cape Town 7701, South Africa

    • Domingo C. Salazar-García
  13. Departament de Prehistòria i Arqueologia, Universitat de València, Valencia 46010, Spain

    • Domingo C. Salazar-García
  14. Research Group on Plant Foods in Hominin Dietary Ecology, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany

    • Domingo C. Salazar-García
  15. Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia

    • Yaroslav V. Kuzmin &
    • Susan G. Keates
  16. Institute of Plant and Animal Ecology, Urals Branch of the Russian Academy of Sciences, Yekaterinburg 620144, Russia

    • Pavel A. Kosintsev
  17. Laboratory of Archaeology, Department of Anthropology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada

    • Michael P. Richards
  18. Siberian Cultural Center, Omsk 644010, Russia

    • Nikolai V. Peristov
  19. Santa Fe Institute, Santa Fe, New Mexico 87501, USA

    • Michael Lachmann
  20. Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK

    • Katerina Douka &
    • Thomas F. G. Higham
  21. Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA

    • David Reich

Contributions

Q.F., S.M.S., A.A.B., Y.V.K., J.K., T.B.V. and S.P. designed the research. A.A.P. and Q.F. performed the experiments; Q.F., H.L., P.M., F.J., P.L.F.J., K.P., C.d.F., M.M., M.L., M.S., D.R., J.K. and S.P. analysed genetic data; K.D. and T.F.G.H. performed 14C dating; D.C.S.-G. and M.P.R. analysed stable isotope data; N.V.P., P.A.K. and D.I.R. contributed samples and data; S.M.S., A.A.B., N.Z., Y.V.K., S.G.K., J.-J.H. and T.B.V. analysed archaeological and anthropological data; Q.F., J.K., T.B.V. and S.P. wrote and edited the manuscript with input from all authors.

Competing financial interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to:

Humans Interbred Neanderthals 50,000 Years Ago:   All sequence data have been submitted to the European Nucleotide Archive (ENA) and are available under the following Ust’-Ishim accession number: PRJEB6622. The data from the 25 present-day human genomes are available from (http://www.simonsfoundation.org/life-sciences/simons-genome-diversity-project/) and from (http://cdna.eva.mpg.de/neandertal/altai/).

Leave a Reply

Your email address will not be published.

Anomalous Intuitive


FBIS AIHT IHT IHT VVM RYMG CYMG UYMG SiteMaps-IHT